演化多目标优化:基于分解思想的经典算法MOEA/D
前言
在多目标优化问题中,基于帕累托支配关系的最优解集(即帕累托前沿,PF)很可能不是有限的集合;多数情况下可能是高维空间中某一区域。因此,优化算法的目标就是在有限时间里得到一个能够表现出PF的形状、且分布良好的解集。这也是为什么收敛性和多样性在演化多目标优化算法中是两大重要指标。经典的基于支配关系的算法框架(如NSGA-II等)依靠适应值来维护解集的多样性,避免边缘解的丢失以及解过于密集的现象。而MOEA/D的提出,将分解的思想重新带入了演化多目标优化的领域来。
Read More